方法一:采用torch.nn.Module模块
import torchimport torch.nn.functional as F#法1class Net(torch.nn.Module): def __init__(self,n_feature,n_hidden,n_output): super(Net,self).__init__() self.hidden = torch.nn.Linear(n_feature,n_hidden) self.predict = torch.nn.Linear(n_hidden,n_output) def forward(self,x): x = F.relu(self.hidden(x)) out = self.predict(x) return xnet1 = Net(2,10,2)print(net1)
打印的结果:
方法二:类似keras的sequencial搭建网络的方法
net2 = torch.nn.Sequential( torch.nn.Linear(2,10), torch.nn.ReLU(), torch.nn.Linear(10,2),)print(net2)
打印结果:
Sequential(
(0): Linear(in_features=2, out_features=10, bias=True) (1): ReLU() (2): Linear(in_features=10, out_features=2, bias=True))